首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32481篇
  免费   2273篇
  国内免费   4631篇
  2024年   39篇
  2023年   504篇
  2022年   584篇
  2021年   875篇
  2020年   888篇
  2019年   1181篇
  2018年   1001篇
  2017年   986篇
  2016年   1062篇
  2015年   1248篇
  2014年   1655篇
  2013年   2133篇
  2012年   1403篇
  2011年   1638篇
  2010年   1295篇
  2009年   1836篇
  2008年   1911篇
  2007年   1974篇
  2006年   1810篇
  2005年   1828篇
  2004年   1603篇
  2003年   1516篇
  2002年   1240篇
  2001年   999篇
  2000年   858篇
  1999年   786篇
  1998年   775篇
  1997年   579篇
  1996年   610篇
  1995年   642篇
  1994年   566篇
  1993年   446篇
  1992年   421篇
  1991年   378篇
  1990年   316篇
  1989年   233篇
  1988年   226篇
  1987年   179篇
  1986年   151篇
  1985年   178篇
  1984年   148篇
  1983年   92篇
  1982年   127篇
  1981年   100篇
  1980年   71篇
  1979年   57篇
  1978年   38篇
  1977年   35篇
  1976年   30篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
In this article, we discuss molecular mechanisms involved in the evolution of amygdala kindling and the episodic loss of response to pharmacological treatments during tolerance development. These phenomena allow us to consider how similar principles (in different neurochemical systems) could account for illness progression, cyclicity, and drug tolerance in affective disorders. We describe the phenomenon of amygdala-kindled seizures episodically breaking through effective daily pharmacotherapy with carbamazepine and valproate, suggesting that these observations could reflect the balance of pathological vs compensatory illness-induced changes in gene expression. Under certain circumstances, amygdala-kindled animals that were initially drug responsive can develop highly individualized patterns of seizure breakthroughs progressing toward a complete loss of drug efficacy. This initial drug efficacy may reflect the combination of drug-related exogenous neurochemical mechanisms and illness-induced endogenous compensatory mechanisms. However, we postulate that when seizures are inhibited, the endogenous illness-induced adaptations dissipate (the “time-off seizure” effect), leading to the re-emergence of seizures, a re-induction of a new, but diminished, set of endogenous compensatory mechanisms, and a temporary period of renewed drug efficacy. As this pattern repeats, an intermittent or cyclic response to the anticonvulsant treatment emerges, leading toward complete drug tolerance. We also postulate that the cyclic pattern accelerates over time because of both the failure of robust illness-induced endogenous adaptations to emerge and the progression in pathophysiological mechanisms (mediated by long-lasting changes in gene expression and their downstream consequences) as a result of repeated occurrences of seizures. In this seizure model, this pattern can be inhibited and drug responsivity can be temporarily reinstated by several manipulations, including lowering illness drive (decreasing the stimulation current.), increasing drug dosage, switching to a new drug that does not show crosstolerance to the original medication, or temporarily discontinuing treatment, allowing the illness to re-emerge in an unmedicated animal. Each of these variables is discussed in relation to the potential relevance to the emergence, progression, and suppression of individual patterns of episodic cyclicity in the recurrent affective disorders. A variety of clinical studies are outlined that specifically test the hypotheses derived from this formulation. Data from animal studies suggest that illness cyclicity can develop from the relative ratio between primary pathological processes and secondary endogenous adaptations (assisted by exogenous medications). If this proposition is verified, it further suggests that illness cyclicity is inherent to the neurobiological processes of episode emergence and amelioration, and one does not need to postulate a separate defect in the biological clock. The formulation predicts that early and aggressive long-term interventions may be optimal in order to prevent illness emergence and progression and its associated accumulating neurobiological, vulnerability factors.  相似文献   
3.
The Hoechst dye staining method has been successfully applied to the central nervous system in mammals and its use has been demonstrated in intracerebral transplantation. The technique is rapid, simple and based on intrinsic nuclear properties. It was found to be permanent and valid whatever the animal strains or ages, allowing the distinction of rat cells from those of mouse, studied either separately or in a cross-transplantation model. It permitted the detection of grafted cells in the area of transplantation and the observation of early dispersion around the implantation site. Moreover, it can be combined with immunohistochemistry as demonstrated by a myelin marker in a relevant model. Immunodetection can thus help to directly observe grafted cells, at distance from the locus of transplantation, confirming their presence in the graft-type myelin patches.

Because of its rapid performance, this technique can be used systematically after transplantation to check for the presence of grafted cells in the host.  相似文献   
4.
Abstract: The turnover of a CNS-specific cell adhesion glycoprotein, ependymin, has earlier been found to increase during periods of neuronal plasticity. Here, ependymin mRNA expression was analyzed by semiquantitative in situ hybridization in goldfish. Learning of an active avoidance response resulted in a significant increase in ependymin mRNA expression 20 min to 4 h after acquisition of the task. In contrast, yoked control animals that were exposed to the same numbers of conditioned and unconditioned stimuli in a random, unpaired manner exhibited a strong down-regulation of ependymin mRNA. Hybridization signals were also increased by injection of anti-ependymin antiserum into brain ventricles. Ependymin mRNA was exclusively localized to reticular-shaped fibroblasts of the inner endomeningeal cell layer. Immunoelectron microscopic investigation, however, revealed ependymin also in distinct neuronal and glial cell populations in which no ependymin mRNA had been detected. Uptake of meningeal protein factors into glial and neuronal cells may therefore be of functional importance for plastic adaptations of the CNS.  相似文献   
5.
Sugarcane cultivation supports Brazil as one of the largest world sugar and ethanol producer. In order to understand the impact of changing sugarcane harvest from manual to mechanized harvest, we studied the effect of machinery traffic on soil and consequently soil compaction upon soil microbial communities involved in nitrogen cycling. The impact of sugarcane harvest was dependent on soil depth and texture. At deeper soil layers, mechanized harvesting increases the abundance of nitrogen fixers and denitrifying communities (specifically nosZ clade I and II) while manual harvesting increases the abundance of ammonia oxidizers (specifically AOA) and increases denitrifying communities (nosZ clade I and II) on top and at intermediate depth. The effect of change on the harvest system is more evident on sandy soil than on clay soil, where soil indicators of compaction (bulk density and penetration resistance) were negatively correlated with soil microorganisms associated with the nitrogen cycle. Our results point to connections between soil compaction and N transformations in sugarcane fields, besides naming biological variables to be used as proxies for alterations in soil structure.  相似文献   
6.
7.
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure–function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.  相似文献   
8.
9.
Blood vessel expansion and reduction in the corpus luteum (CL) is regulated by the vascular endothelial growth factor (VEGF) system and linked to the maintenance of the CL. The VEGF system has both angiogenic and antiangiogenic ligands and receptors. Our objective was to evaluate the relationship between the mRNA expression of angiogenic and antiangiogenic members of the VEGF system in the CL, throughout the luteal phase of the oestrous cycle in cows. The CL of 18 cows were collected by transvaginal surgery on days 4, 6, 9, 12, 15 and 18 of the oestrous cycle and the mRNA expression of VEGF system components was evaluated by quantitative real-time PCR. The mRNA expression of VEGF ligands and receptors increased (P<0.05) from the early- and mid-luteal phase (days 4 to 12) reaching its maximum expression on day 15 of the cycle. We found no expression of VEGF164b throughout the cycle. Expression of sVEGFR1 did not change during the oestrous cycle and exceeded that of the VEGFR1 by 100 times. Nonetheless, as VEGFR1 increased, the relationship between the soluble and membrane receptor decreased (P<0.01). In contrast, the expression of VEGFR2 was higher than that of its soluble isoform for all days studied, however, the ratio between the membrane-bound and its soluble counterpart decreased continuously throughout the cycle (P<0.01). Our results show that the expression levels for VEGF ligands, receptors and their antagonistic counterparts are adjusted during CL development and regression, to upregulate angiogenesis early in the oestrous cycle and restrict it at the time of luteolysis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号